PhD Studentship
Implementation of GPU-accelerated simulations for real time propagated excited states and applications to organometallic photochemistry
Supervisors: Professor Matt Watkins, School of Mathematics and Physics, 香港六合彩官网资料 and Dr Joshua Elliott & Dr Sofia Diaz-Moreno, Department of Physical Science, Diamond Light Source Ltd.
4-year Fully Funded PhD Studentship developing real-time time-dependent density functional theory simulations of photoactive organometallic compounds.
is the UK’s national synchrotron science facility. By accelerating electrons to near light-speed, Diamond generates brilliant beams of light from infra-red to X-rays which are used for academic and industry research and development across a range of scientific disciplines including structural biology, physics, chemistry, materials science, engineering, earth and environmental sciences.
Summary
Applications are welcome for a four-year funded PhD studentship jointly held at the School of Mathematics and Physics, 香港六合彩官网资料 and the Spectroscopy Group at Diamond Light Source starting October 2023. The Studentship will focus on developing GPU parallelised routines for Real-Time Propagated Time-Dependent Density Functional Theory with the Open Source CP2K software and their application to Pump and Probe spectroscopy data collected at the I18 Microfocus beamline.
Background
Understanding, on an atomic scale, how light-activated processes drive chemical reaction mechanisms, local geometric rearrangements and charge transfer reactions will be pivotal in engineering next-generation devices and overcoming our overreliance on carbon-positive technology. X-ray pump and probe spectroscopy is a critical tool for probing light-induced reaction mechanisms and photo-excited states. However, this type of experiment typically provides data of seldom observed chemical states and therefore, further analysis and characterisation can be highly challenging.
First-principles simulations can be focal in interpreting experimental spectroscopic data collected at Diamond Light Source. Real-Time Propagation Time-Dependent DFT has emerged as a powerful and viable means to investigate the time evolution of excited states subject to a time-dependent electromagnetic field.
Project Description
The studentship targets the acceleration of the RTP-TDDFT routines within the CP2K code through GPU parallelisation. RTP-TDDFT will be deployed to provide insight into the fundamental dynamical excited state properties of organo-transition metal complexes of particular interest to the facilities’ user communities. In addition, it will implement an automated framework for RTP-TDDFT simulations of more generalised materials across different High-Performance Computing facilities available to Diamond Light Source scientists and users.
Further Information
Diamond Light Source Ltd holds an Athena SWAN Bronze Award, demonstrating their commitment to provide equal opportunities and to advance the representation of women in STEM/M subjects: science, technology, engineering, mathematics and medicine.
How to Apply
We seek a highly motivated student interested in research software development and materials science to join our team. Interested applicants are asked to provide an up-to-date CV and a one to two page cover letter outlining their scientific background, expertise and research interests and the names ad contact details of two references to Joshua.elliott@diamond.ac.uk and MWatkins@lincoln.ac.uk. Informal enquiries are also encouraged.
The position will remain open until a suitable candidate is found.